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I. INTRODUCTION

This paper works towards developing agent-based models
of socio-technical systems to study security failures. These
models could contribute to multi-component simulations such
as cyber range events, where they would generate network
traffic[8][9]. Agent-based modeling[10] involves autonomous
and proactive programs which communicate peer-to-peer.
Socio-technical system approaches involve models of humans,
their organizations, the tools they use, and the interaction be-
tween all of these[11]. Agent-based models of socio-technical
systems have been applied in the context of air traffic systems
of air traffic controllers and pilots[11], economic produc-
tion/consumption networks[12], and more.

The components of our model need to be justified in terms
of theory or data, preferably both. As a starting point we adapt
an agent-based model of socio-technical systems developed
by Crowder et al.[13], which is based on concepts from
industrial psychology, on data collections, and on discussions
with subject matter experts.

II. BLACKOUT SCENARIO

We are particularly interested in the security of electrical
power grids, which are considered one of a nations’s Critical
Infrastructure and Key Assets, whose effectiveness and secu-
rity are vital to maintain[14], and which are a potential target
for attack[15].

Finding a good historical example relevant to critical infras-
tructure is challenging because of the need for a scenario that
is well-documented and realistic. Unfortunately, security and
privacy concerns make finding such information difficult. Our
solution is to identify a scenario from a general system failure
case. System failures are disruptions of normal functions,
and security failures can been seen as intentional system
disruptions[16]. We therefore adapt a past system failure
case whose causes could plausibly have been intentional and
computer-related.

The scenario we identified is the 2003 Northeast Blackout,
which was the largest blackout in North American history.
It affected 50 million people (including over 20 million in
the New York City and 8 million in the Toronto metropolitan
areas) and cost an estimated 6 billion dollars[17], revealing
vulnerabilities in the infrastructure and management of the

Fig. 1. Organizational structure of relevant entities in the 2003 Northeast
Blackout.

electrical power grid. Unless otherwise stated, the description
details in Section II are taken from the North American
Electric Reliability Corporation’s “Final Report on the August
14, 2003 Blackout in the United States and Canada.”[18]

Figure 1 shows the organizational structure of the socio-
technical elements contributing to the 2003 Northeast Black-
out.

Reliability Coordinators (RCs) cover multi-state regions;
they are responsible for monitoring and coordinating their
multiple Control Areas (CAs) as well as the CAs of their
neighbors. RCs must provide yearly, monthly, and daily energy
consumption predictions, as well as contingency analyses for
managing electrical flow during unanticipated situations. One
of the tools that RCs use is a state estimator, which enables
these contingency analyses.

The 2003 Northeast Blackout was not the result of a
computer attack, but each of the socio-technical system’s
failures could have been caused by a computer attack without
changing the way that the system reacted. What we call our
Blackout scenario therefore is an extraction of the socio-
technical security vulnerabilities displayed during the 2003
Northeast Blackout.

III. AGENT-BASED MODEL

A. Original Model

Given our need for realistic user agents when implementing
the scenario, we next sought out an appropriate user model. We
chose an agent-based model developed by Crowder et al.[13]
which applied socio-technical systems theory to modeling
work teams. Crowder et al. developed their model with con-
cepts from psychology, management, and computer modeling,



as well as with quantitative and qualitative data collected from
multidisciplinary engineering teams. Their model describes
how a task’s requirements cause team members to commu-
nicate among themselves, and the cognitive mechanisms that
integrate the results of that communication.

The Crowder et al. model includes a Task Workflow Model
which describes the steps required to complete a task, de-
pendencies between the steps, the difficulty of each step,
and the team member responsible for completing the task.
Additionally, an Agent Model with components such as Trust
and Shared Mental Models uses a set of equations to describe
the interaction of those components while performing a task.
The model produces a set of completion and working times
for performing the task, as well as a measure of task quality.
Finally, a Communication Model describes the way that agents
request information as needed, to increase their ability to
complete a task step. More details about these models is
contained in Section III-B where we describe adapting them
to our scenario.

B. Adapting the Model

1) Task Workflow Model: Figure 2 shows the Task Work-
flow Model. It includes 4 tasks, each which has an agent
assigned to it (either CA1 or RC1) and a Task Difficulty value
between 0 and 5, following Crowder et al.’s use of semantic
labels on that scale.

To determine the Task Difficulty, we produced qualitative
descriptions of the information available to the agents, as well
as of the stakes involved. As the scenario progresses, more
information is available to the agents about the nature of the
problem; in that way the tasks are easier. As the scenario
progresses the stakes are higher, though, so in that way the
tasks are harder. This analysis produced a quantitative estimate
based on the dynamic between these qualitative factors .

2) Agent and Communication Models: The Crowder et al.
model was developed from an engineering domain that took
weeks and months to perform, rather than the shorter time-
frame involved in the Blackout scenario. This led us to make
several changes to our Agent Model.

The Crowder et al. Agent Model produced several outputs:
the Completion Time tracks how long it takes an agent to finish
a particular task; these are combined from all tasks and agents
to produce a Total Completion Time. The Working Time tracks
how much time the individual agent spends working on a task;
these are combined from all tasks and agents to produce a
Total Completion Time. The Quality describes the degree of
excellence of the task once finished; these are combined from
all tasks and agents to produce a Total Quality.

In our Blackout scenario, the agents were working under
strict time constraints. They had a short amount of time to
decide how to resolve problems they encountered, and at the
end of time they had to address the problem, such as dropping
power or shifting loads, but even if the operators dropped
power, they might not drop enough. Doing nothing before
time ran out was one way of handling the task, though in
our scenario this was always the wrong decision. Because

task completion time was a constraint, we removed the Com-
pletion Time and Working Time components, as well as the
Availability, Learning Time, and Response Rate components
which likewise were dependent on longer time-scales.

Next, we considered the Shared Mental Models, Motiva-
tion, and Communication Frequency components. The main
distinctions between those components was that Shared Men-
tal Models did not directly affect Quality, and Competency
affected Communication but Motivation did not. However, the
distinction between these components is more important in
Crowder et al.’s use case than in ours: for example, they may
be interested in changing these values to determine whether it
is more cost-effective to invest in increasing team Motivation,
or team Shared Mental Models. Furthermore in the Crowder
et al. model, the equations that drove the algorithms behind
these components contained numerous coefficients derived
from regression analyses of Likert-scale questionnaire data
taken from their engineering domain. To limit dependence
on these domain-specific coefficients, we therefore merged
the Shared Mental Models and Quality components into the
Competency component, and included a normally (Gaussian)
distributed value with a standard deviation of 1 in the equation
for Competency as a way of partially substituting for their
effect. Our final Agent Model is shown in Figure 3.

Crowder et al.’s version of Trust is an input value, modified
by the success or failure of the agent’s previous interactions
with a team member on longer-lasting tasks. Because our
tasks and time scales are different, our version of Trust is
an input value on the 0-5 scale to produce the base trust τb.
This base trust will be modified by a normally (Gaussian)
distributed value vτ with a standard deviation of 1 and a mean
determined by the experiment settings as described in Section
IV to produce a working trust τw.

τw = τb + vτ (1)

Crowder et al.’s version of Competency is an input value,
which is increased by interactions with other team members.
Our Blackout scenario agents also have a base input value
Cb modified by a normally distributed value vC (which also
has a standard deviation of 1 and a mean determined by the
experiment settings). This may also be modified by an increase
in competency due to interactions with other team members
δC to produce a working competency Cw.

Cw = Cb + vC + δC (2)

We use Crowder et al.’s equation for δC and similarly cap
the possible Competency gain to 0.3.

Crowder et al.’s model assumes that a receiving agent Cr
will continue to seek communications with other team mem-
bers Cp who are providing information (thereby increasing
Competency) until the agent has a Competency sufficient for
the task difficulty. In the Blackout scenario, the CA1 agent has
a chance to gain competency from the CA2 agent, but does not
seek out further competency gain due to the Task time scale
and absence of other agents to refer to. Therefore although our
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Fig. 3. Adapted Agent Model.

Competency can in principle interact with Communication, in
this scenario’s tasks it does not.

In our scenario, for a task n the Task Quality Qn is a
(0,1) value describing whether the voltage problems were
completely resolved, because partial solutions did not stop
the process leading towards blackout. This is determined
by comparing the agent’s working Competency to the Task
Difficulty Dn. If Cw ≥ Dn, then the Task Quality is 1
(success); otherwise it is 0 (failure).

The overall Performance Quality QP then expresses the
performance on the i tasks of the Blackout scenario as an
integer between 0 (for blackout) to 5 (for best outcome).

QP =
5

4
(4−

i∑
n=1

(1−Qn)) (3)

Finally, our Communication Model is shown in Figure 1.
Communications are tied to the workflow model: each Task
defines a communication that occurs between agents as part
of their involvement in the system.

IV. SIMULATIONS

A. Baseline Simulation

We ran 12,500 iterations of the Blackout scenario to build a
baseline. We ensured an iteration through the parameter space
of all possible inputs by cycling through the base competency
settings as shown in Table I. In this way we are sure to explore
all possible combinations of team competencies, rather than be
tied to a representation in which the teams are all of mid-level
competency or high-level competency. Having explored the
parameter space through 12,500 iterations, we then reduced
the number of iterations for subsequent experiments.

TABLE I
EXPERIMENT SETTINGS

CA1 Trust CA1 base CA2 base RC1 base
in CA2 Competency Competency Competency

1 VH (4.5) VH (4.5) VH (4.5) VH (4.5)
2 VH (4.5) VH (4.5) VH (4.5) H (3.5)
3 VH (4.5) VH (4.5) VH (4.5) M (2.5)
... ... ... ... ...
625 VL (0.5) VL (0.5) VL (0.5) VL (0.5)

TABLE II
EXPERIMENT SIMULATIONS

Baseline Delegation 1 Delegation 2
Total Iterations 12500 3125 3125
Outcome 1 1273 (10.2%) 314 (10.0%) 630 (20.2%)
Outcome 2 4495 (36.0%) 1125 (36.0%) 1000 (32.0%)
Outcome 3 3082 (24.7%) 757 (24.2%) 829 (28.5%)
Outcome 4 0 (0%) 377 (12.1%) 243 (7.8%)
Outcome 5 3650 (29.2%) 552 (17.7%) 360 (11.5%)
Total Blackout 3650 (29.2%) 552 (17.7%) 360 (11.5%)
Total Non-Blackout 8850 (70.8%) 2573 (82.3%) 2765 (88.5%)

Table II shows the results, along with the number of times
each outcome occurred. The outcomes described here are those
shown in Figure 2 and described in Section III-B1: Outcome
1 is Normal Operations, Outcome 2 is Drop Voltage from H-J
and H-S lines, Outcome 3 is Outages in Cleveland, Outcome
4 is Outages in Cleveland/Akron region, and Outcome 5 is
Cascade Begins, Blackout.

As a metric for determining the efficiency of the agent
system, we used the percentage of iterations in which Qp > 0.
This is the percentage of Non-Blackouts, the number of times
the scenario ended in Outcomes 1-4 (i.e. was resolved by
dropping voltage from lines or regions, even if resulting in
smaller local outages) instead of reaching Outcome 5, (i.e.
ended in a cascade leading to a major blackout as in the
2003 Northeast Blackout.) The total and percentage of Non-
Blackouts is shown in the last row of Table II.

B. Delegation Experiments

As a first experiment, we explored a policy which might
improve upon the situation where Outcome 4 never occurs. We
implemented an agent team policy in which, upon reaching
Task 4, that task is delegated to another agent. This was
effected by replacing the CA1 agent with a CA1 agent with



a different Competency. The rationale for this is that CA
organizations are actually made up of numerous agents. We
were previously assuming that a single CA agent would handle
every task, but it is equally reasonable to assume that a CA
organization would have a set of agents, and that the organiza-
tion’s policy would be to randomly assign tasks that have been
received. We hypothesized that this policy would improve the
Total Non-Blackout metric. 3125 simulation iterations using
this delegation policy produced the data summarized in the
Delegation 1 column of Table II; we found that the total
number of non-blackouts differed from the total number in
the baseline data to a statistically significant extent with a p-
value<0.0003.

However, this is slightly unrealistic because it assumes that
the CA team has a reliable way of knowing that they were
in a task that should be delegated to another agent. As a
second experiment, we therefore hypothesized that delegating
each of the tasks in the scenario (instead of only Task 4)
to different agents would significantly increase performance.
We implemented this as instantiating a new agent with a new
competency rating for each task in Figure 2. 3125 simulation
iterations using this new delegation policy produced the data
summarized in the Delegation 2 column of Table II; we found
that the total number of non-blackouts differed from the total
number in the baseline data to a statistically significant extent
with a p-value<0.0003. Note also the increase in the best
possible outcome of Outcome 1, and the decrease in the two
worst Non-Blackout outcomes of Outcomes 4 and 5.
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